Q and P representatives for spherical tensors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9 L65
(http://iopscience.iop.org/0305-4470/9/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Q and P representatives for spherical tensors

R Gilmore ${ }^{\dagger}$
Institut de Physique Théorique, Université Catholique de Louvain, B-1348 Louvain-laNeuve, Belgique

Received 4 May 1976

Abstract

The Q and P representatives for the irreducible spherical tensor operators $\mathscr{Y}_{\mathbf{M}}^{L}(J)$ are proportional to the corresponding spherical harmonics $Y_{M}^{L}(\theta, \phi)$. In the coherent state basis associated with the $(2 j+1)$-dimensional unitary irreducible representation of $\operatorname{SU}(2)$, the proportionality factors are $(2 j)!/(2 j-L)!2^{L}$ and $(2 j+1+L)!/(2 j+1)!2^{L}$, respectively.

Let \hat{F} be a symmetrized polynomial function of the angular momentum operators \boldsymbol{J} for a single spin. Then \hat{F} has a unique Q representative (Glauber 1963) $\hat{F}^{O} f(\Omega)$ in the $(2 j+1)$-dimensional space which carries the irreducible representation $D^{j}[\mathrm{SU}(2)]$:

$$
\begin{equation*}
f(\Omega)=\langle\Omega| \hat{F}|\Omega\rangle \tag{1Q}
\end{equation*}
$$

Here $\Omega=(\theta, \phi)$ represents a point on the surface of the Bloch sphere, with θ measured from the north pole, and $|\Omega\rangle$ is an atomic coherent state (Arecchi et al 1972):

$$
\begin{equation*}
\left.|\Omega\rangle=\left.\sum_{m}\right|_{m} ^{j}\right\rangle D_{m j}^{j}(\Omega) \tag{2}
\end{equation*}
$$

The operator \hat{F} also possesses a non-unique (Arecchi et al 1972) P representative $\hat{F}^{P} \xrightarrow{P} F(\Omega)$ determined by

$$
\begin{equation*}
\hat{F}=\frac{2 j+1}{4 \pi} \int|\Omega\rangle F(\Omega)\langle\Omega| \mathrm{d} \mu(\Omega) \tag{1P}
\end{equation*}
$$

The Q and P representatives of \hat{F} are related by the convolution

$$
\begin{equation*}
f(\Omega)=\frac{2 j+1}{4 \pi} \int F\left(\Omega^{\prime}\right)\left|\left\langle\Omega^{\prime} \mid \Omega\right\rangle\right|^{2} \mathrm{~d} \mu\left(\Omega^{\prime}\right) \tag{3}
\end{equation*}
$$

This convolution annihilates the non-unique part of the P representative, and provides a one-to-one correspondence between $f(\Omega)$ and the unique part of $F(\Omega)$.

The relation between $f(\Omega)$ and $F(\Omega)$ is made explicit by expanding these functions in terms of spherical harmonics as follows:

$$
\begin{equation*}
f(\Omega)=\sum_{L=0}^{2 /} \sum_{M=-L}^{+L} f_{M}^{L} \frac{2 L+1}{4 \pi} Y_{M}^{L}(\Omega) \tag{4}
\end{equation*}
$$

[^0]If the Fourier coefficients of $F(\Omega)$ and the kernel

$$
K(\Omega)=\frac{2 j+1}{4 \pi}|\langle\theta=0, \phi=0 \mid \Omega\rangle|^{2}
$$

are defined similarly, then (Gilmore 1972)

$$
\begin{equation*}
f_{M}^{L}=F_{M}^{L} K_{0}^{L} \tag{5}
\end{equation*}
$$

where K_{0}^{L} is the square of a Clebsch-Gordan coefficient (Gilmore et al 1975) and

$$
\begin{equation*}
K_{0}^{L}=\frac{(2 j+1)!(2 j)!}{(2 j+1+L)!(2 j-L)!} \tag{6}
\end{equation*}
$$

The Q and P representatives of \hat{F} are proportional if either is homogeneous of degree L.

The generating function (Arecchi et al 1972) for moments of angular momentum operators can be used to compute the Q representative for $\left(J_{+}\right)^{L}$:

$$
\begin{equation*}
\langle\Omega|\left(J_{+}\right)^{L}|\Omega\rangle=\frac{(2 j)!}{(2 j-L)!2^{L}}\left(\mathrm{e}^{\mathrm{i} \phi} \sin \theta\right)^{L} \tag{7}
\end{equation*}
$$

The operator $\left(J_{+}\right)^{L}$ is proportional to the spherical tensor $\mathscr{Y}_{L}^{L}(J)$ and $\left(\mathrm{e}^{\mathrm{i} \phi} \sin \theta\right)^{L}$ is proportional to the spherical harmonic $Y_{L}^{L}(\theta, \phi)$ with the same proportionality factor. Since $\mathscr{Y}_{M}^{L}(J)$ and $Y_{M}^{L}(\theta, \phi)$ transform identically under $\operatorname{SU}(2)$, we have a very simple expression for the Q representative of $\mathscr{Y}_{M}^{L}(J)$:

$$
\begin{equation*}
\mathscr{Y}_{M}^{L}(J) \xrightarrow{Q} \frac{(2 j)!}{(2 j-L)!2^{L}} Y_{M}^{L}(\Omega) . \tag{8Q}
\end{equation*}
$$

The unique part of the P representative follows directly from (5) and (6)

$$
\begin{equation*}
\mathscr{Y}_{M}^{L}(J) \xrightarrow{P} \frac{(2 j+1+L)!}{(2 j+1)!2^{L}} Y_{M}^{L}(\Omega) . \tag{8P}
\end{equation*}
$$

For example, for $L=1$ the Q representatives of $J_{ \pm}, J_{z}$ are $j \mathrm{e}^{ \pm i \phi} \sin \theta, j \cos \theta$, while their P representatives are $(j+1) \mathrm{e}^{ \pm i \phi} \sin \theta,(j+1) \cos \theta$. For $L=2$, the Q and Prepresentatives of $3 J_{z}^{2}-J^{2}$ are $j\left(j-\frac{1}{2}\right)\left(3 \cos ^{2} \theta-1\right)$ and $(j+1)\left(j+\frac{3}{2}\right)\left(3 \cos ^{2} \theta-1\right)$, as previously given by Lieb (1973).

References

Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A 62211-39
Gilmore R 1972 Ann. Phys. NY 74 391-463
Gilmore R, Bowden C M and Narducci L M 1975 Phys. Rev. A 12 1019-31
Glauber R J 1963 Phys. Rev. 131 2766-88
Lieb E H 1973 Commun. Math. Phys. 31 327-40

[^0]: \dagger Permanent address: Physics Department, University of South Florida, Tampa, Florida 33620, USA.

